出生年月: 1991年11月
职 称: 副教授
学科方向:油气田开发工程
研究方向: 油气藏数值模拟、CO2-EOR,CCUS,机器学习在油气领域的应用
电子邮箱:junyu.you@cqust.edu.cn
博士,讲师,主要讲授《油层物理》、《数值模拟》等专业课程。主要从事油气藏数值模拟、CO2-EOR、CCUS、多目标优化等研究工作,发表SCI论文、EI收录论文二十余篇。受邀担任《Journal of Petroleum Science and Engineering》、《 Fuel》、《International Journal of Greenhouse Gas Control》等期刊审稿人。
2010.9-2014.6,中国石油大学(北京),石油工程,学士
2014.8-2016.12,新墨西哥矿业科技学院,石油工程,硕士
2017.1-2020.7,新墨西哥矿业科技学院,石油与天然气工程,博士
2021.1至今,bat365官网登录入口,教师
承担和参与主要科研项目:
重庆市科技局面上项目,CO2-压裂液作用下低渗碳酸盐岩油藏孔渗演变规律及多相渗流机理研究,2022-2025,主持;
重庆市教委青年项目,水力压裂页岩气井产能预测的人工智能方法,2022-2025,主持;
中石油西南油气田分公司川东北气矿项目,川东北气矿已开发老气田潜力区块挖潜增产措施研究,2022-2023,主持;
我校青年启动项目,基于神经网络的页岩气产能预测及主控机制研究,2021-2024,主持;
中石油勘探开发研究院项目,马北8和马北14整体建库地质建模及对比方案,2022-2023,主研;
中石油勘探开发研究院项目,刘庄储气库扩容工程地质建模及数值模拟研究,2021-2022,主研;
中石油西南油气田分公司川东北气矿项目,温泉井区石炭系气藏动态特征精细描述,2021-2022,主研;
美国能源部项目, The Southwest Regional Partnership on Carbon Sequestration,2018-2020,主研;
代表性学术论文:
[1] You J, Ampomah W, Tu J, et al. Optimization of Water-Alternating-CO2 Injection Field Operations Using a Machine-Learning-Assisted Workflow[J]. SPE Reservoir Evaluation & Engineering, 2021.
[2] You J, Ampomah W, Morgan A, et al. A comprehensive t echno-eco-assessment of CO2 enhanced oil recovery projects using a machine-learning assisted work flow[J]. International Journal of Greenhouse Gas Control, 2021: 103480.
[3] You J, Ampomah W, Sun Q. Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework[J]. Applied Energy, 2020:115695.
[4] You J, Ampomah W, Sun Q, et al. Machine learning based co-optimization of carbon dioxide sequestration and oil recovery in CO2-EOR project[J]. Journal of Cleaner Production, 2020: 120866.
[5] You J, Ampomah W, Sun Q. Development and application of a machine learning based multi-objective optimization workflow for CO2-EOR projects[J]. Fuel, 2020, 264: 116758.
[6] You J, Rahnema H. Numerical modeling of multiphase steam flow in wellbore[J]. Journal of Petroleum Science and Engineering, 2018, 164: 259-277.
[7] You J, Rahnema H, McMillan M D. Numerical modeling of unsteady-state wellbore heat transmission [J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1062-1076.
[8] You J, Ampomah W, Sun Q, et al. Multi-Objective Optimization of CO 2 Enhanced Oil Recovery Projects Using a Hybrid Artificial Intelligence Approach[C]//SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2019.
[9] You J, Ampomah W, Kutsienyo E J, et al. Assessment of Enhanced Oil Recovery and CO Storage Capacity Using Machine Learning and Optimization Framework[C]//SPE Europec featured at 81st EAGE Conference and Exhibition. Society of Petroleum Engineers, 2019.
/__local/9/C8/97/8F16C8F654B2AF810E7224AC408_F7B6F71E_2519A.jpg